Гранит и камень

Понятие о форме и поверхности Земли



Какова фигура у нашей планеты?



Знание фигуры и размеров Земли необходимо во многих областях и прежде всего для определения положения объектов на земной поверхности и правильного её изображения в виде карт, планов и цифровых моделей местности.

форма Земли

Земная поверхность представляет собой ряд неровностей: горы, лощины, овраги, равнины, долины, плато и прочие очертания суши чередуются с водным пространством океанов, морей, рек, озер и других водоемов.
Площадь поверхности океанов и морей во много раз больше площади суши. Из 510 млн. кв. км всей поверхности нашей планеты 361 млн. кв. км (71 %) занимают водоемы, и лишь 149 млн. кв. км (29 %) - суша.

Подводная поверхность включает в себя систему срединно-океанических хребтов, подводные вулканы, океанические желоба, подводные каньоны, океанические плато и абиссальные равнины. Надводная часть земной поверхности также характеризуется многообразием форм - горы, овраги, возвышенности, низменности и т. д.
С течением времени поверхность Земли из-за тектонических процессов и эрозии постоянно изменяется.

Если представить карту земной поверхности в целом, то отдельные неровности - горы, овраги, лощины и т. д. в сравнении с рельефом всей земной поверхности будут настолько незначительными, что общий вид Земли представится в виде формы, близкой к форме шара, радиус которого - около 6370 км.

Последние исследования формы земной поверхности показали, что она уклоняется от правильной геометрической формы сфероида и в реальности имеет форму неправильной объемной фигуры, отдаленно напоминающей грушу, и получившей название "геоид", от греческого "гео" - Земля.
Термин "геоид" для обозначения реальной формы Земли предложил в 1873 году немецкий физик Иоганн Листинг.

Теоретически поверхность геоида совпадает с поверхностью морей и океанов в их спокойном состоянии, и мысленно продолжается под (или над) сушей. Эта поверхность принимается за математическую поверхность Земли, или, как ее называют в обиходе, "уровень моря", от которого отсчитывают высоты точек суши (так называемые ортометрические высоты). Реальная форма геоида весьма сложна и зависит от распределения масс и плотностей в теле Земли. Точно установить положение поверхности геоида на суше очень сложно, поскольку измерения силы тяжести выполняются на физической поверхности Земли, а затем довольно сложными приемами редуцируются на математическую поверхность (геоид) с некоторой долей погрешности. Для упрощения расчетов поверхности геоида и получения более точных результатов моделирования, математики применяли и применяют различные приемы (поверхность квазигеоида Молоденского, модель геоида EGM96, использующая сферические функции - гармоники и т. д.). Все эти математические приемы достаточно сложны. В последние годы заметный прогресс в получении реальной модели земной поверхности позволило получить развитие спутниковой системы измерений.

В настоящее время наиболее широкое использование получил геоцентрический эллипсоид WGS84 (World Goodetic System 1984). Он служит основой для измерения местоположений во всем мире. Система спутниковой навигации GPS сообщает координаты в системе эллипсоида WGS84 (World Goodetic System 1984).
Общеземной эллипсоид ориентируется в теле Земли согласно следующим условиям (определяемыми международными геодезическими организациями, которые организуются и направляются Международной ассоциацией геодезии, действующей по инициативе и в рамках Международного геодезического и геофизического союза):

  • Малая полуось должна совпадать с осью вращения Земли.
  • Центр эллипсоида должен совпадать с центром масс Земли.
  • Сумма квадратов отступлений геоида от общеземного эллипсоида должна быть по всей Земле наименьшей из всех возможных.

Тем не менее, некоторые погрешности и отступления от реальной поверхности имеются при любых, применяемых в настоящее время, расчетах и измерениях.
Для геодезических работ рекомендуется использовать средний эллипсоид GRS80 (Geodetic Reference System 1980), принятый Генеральной Ассамблеей Международной ассоциацией геодезии в 1979 г.

Фигура геоида связана с направлением силы тяжести и, следовательно, существенно зависит от неравномерного распределения масс в земной коре. Поэтому поверхность геоида имеет неправильную, в геометрическом отношении весьма сложную фигуру с неравномерно изменяющейся кривизной. Однако исследованиями установлено, что поверхность геоида в общем близка к поверхности эллипсоида вращения с небольшим сжатием по направлению малой (полярной) оси.
Иногда такой эллипсоид называют сфероидом.
В геодезии для обозначения формы земной поверхности часто используют термин "фигура Земли".



Математическая поверхность Земли

Рассмотрим любое тело в виде материальной точки А на физической поверхности Земли (рис. 1).
На точку А оказывают влияние две силы: сила притяжения Fп, направленная к центру Земли, и центробежная сила вращения Земли вокруг своей оси , направленная от оси вращения по перпендикуляру.
Равнодействующая этих сил называется силой тяжести .
В любой точке земной поверхности направление силы тяжести, называемое ещё вертикальной или отвесной линией, можно легко и просто определить с помощью уровня или отвеса. Оно играет очень большую роль в геодезии. По направлению силы тяжести ориентируется одна из осей пространственной системы координат.
Если через точку А построить замкнутую поверхность, которая в каждой своей точке будет перпендикулярна отвесной линии (направлению силы тяжести), то данную поверхность можно принять в качестве математической при решении некоторых частных задач в геодезии. Такая поверхность получила название уровенной или горизонтальной. Её недостаток в том, что она содержит элемент неопределенности, т. е. через любую точку можно провести свою уровенную поверхность, и таких поверхностей будет бесчисленное множество.
Для устранения этой неопределенности при решении общих геодезических задач принимается так называемая общая математическая поверхность, т. е. уровенная поверхность, которая в каждой своей точке совпадает со средним уровнем морей и океанов в момент полного равновесия всей массы воды под влиянием силы тяжести. Такая поверхность носит название общей фигуры Земли или поверхности геоида.
Геоид - выпуклая замкнутая поверхность, совпадающая с поверхностью воды в морях и океанах в спокойном состоянии и перпендикулярная к направлению силы тяжести в любой её точке (см. рис.1).
Из-за неравномерного распределения масс внутри Земли геоид не имеет правильной геометрической формы, и в математическом отношении его поверхность характеризуется слишком большой сложностью. Поэтому там, где это допустимо, поверхность геоида заменяется приближенными математическими моделями, в качестве которых принимается в одних случаях земной сфероид, в других - земной шар, а при топографическом изучении незначительных по размеру территорий - горизонтальная плоскость, т. е. плоскость, перпендикулярная к вертикальной линии в данной точке.

геодезия и поверхность Земли

Земной сфероид - эллипсоид вращения, который получается вращением эллипса вокруг его малой оси b (см. рис.1), совпадающей с осью вращения Земли, причем центр эллипсоида совмещается с центром Земли.
Размеры эллипсоида подбирают при условии наилучшего совпадения поверхности эллипсоида и геоида в целом (общеземной эллипсоид) или отдельных его частей (референц-эллипсоид). Фигура референц-эллипсоида наилучшим образом подходит для территории отдельной страны или нескольких стран. Как правило, референц-эллипсоиды принимают для обработки геодезических измерений законодательно.

Размеры земного эллипсоида в разное время определялись многими учеными по материалам градусных измерений. В США, Канаде, Мексике, Франции при создании карт пользуются размерами эллипсоида Кларка, в Финляндии и некоторых других странах - размерами эллипсоида Хейфорда, в Австрии - размерами эллипсоида Бесселя .
Наиболее удачная математическая модель Земли в виде референц-эллипсоида была предложена проф. Ф. Н. Красовским с большой полуосью a = 6378245 м, малой - b = 6356863 м и коэффициентом сжатия у полюсов α = (a-b)/a = 1/298.3 ~ 1/300.
Постановлением Совета Министров СССР № 760 от 7 апреля 1946 года эллипсоид Красовского принят для территории нашей страны в качестве математической поверхности Земли.
В инженерной геодезии для практических расчетов за математическую поверхность Земли принимают шар со средним радиусом R = 6371.11 км. Объем шара равен объему земного эллипсоида.

Если на поверхности такого эллипсоида выделить фигуру в виде треугольника со сторонами примерно 25 км каждая, то окажется, что все линии в пределах поверхности этого треугольника, проложенные по поверхности эллипсоида, будут различаться по длине всего на 20 мм от длины прямых линий, соединяющих одноименные точки.
Такая разница для многих вычислений и измерений является настолько незначительной, что ей можно пренебречь и считать данные линии спроектированными не на сферическую поверхность, а на плоскость. Этим приемом пользуются при составлении планов и крупномасштабных карт.
Таким образом, участок сферической поверхности Земли в пределах треугольника со сторонами в 25 км (площадью до 320 кв. км) можно принять за плоскость.
При геодезических измерениях, не требующих повышенной точности, за плоскость условно принимается и окружность на поверхности Земли радиусом до 10 км.

Физическая поверхность Земли

При топографическом изучении физической поверхности Земли надводная и подводная части рассматриваются отдельно. Надводная часть (суша) - местность (территория) является предметом изучения топографии. Подводную часть - акваторию (поверхность, покрытую водами морей и океанов) изучает океанография. В свою очередь местность разделяют на ситуацию и рельеф.
Ситуацией называют совокупность постоянных предметов местности: рек, озер, растительного покрова, дорожной сети, населенных мест, сооружений и т. п. Границы между отдельными объектами ситуации называются контурами местности.
Рельефом (от лат. "relevo" - поднимаю) называют совокупность неровностей суши, дна океанов и морей, разнообразных по очертаниям, размерам, происхождению, возрасту и истории развития.
О рельефе местности можете почитать отдельные статьи сайта.

Рельеф как совокупность неровностей физической поверхности Земли рассматривается по отношению к её уровенной поверхности.
Рельеф слагается из положительных (выпуклых) и отрицательных (вогнутых) форм и образуется главным образом в результате длительного одновременного воздействия на земную поверхность эндогенных (внутренних) и экзогенных (внешних) процессов.
Рельеф изучает раздел геодезии - геоморфология.

* * *

Уровненная поверхность и горизонтальное проложение